Історія виникнення поняття ФУНКЦІЯ.docx (19611)

В історії математики можна умовно виділити два основні періоди: елементарної та сучасної математики. Межею, від якої ведеться відлік епохи нової (іноді — вищої) математики, стало XVII століття. Саме в XVII столітті з'явився математичний аналіз. Предтечами його було числення нескінченно малих в роботах ВаллісаГрегоріБарроу. До кінця XVII ст. Ісааком НьютономГотфрідом Лейбніцом було створено апарат диференційного та інтегрального числення, що становить основу математичного аналізу і навіть математичну основу всього сучасного природознавства.

Рух, змінні величини і їхній взаємозв'язок оточують нас усюди. Різні види руху, їхні закономірності становлять основний об'єкт вивчення конкретних наук: фізикигеологіїбіологіїсоціології тощо. Точна мова і відповідні математичні методи опису і вивчення таких величин виявилися необхідними в усіх областях знань приблизно як числа й арифметиканеобхідні для опису кількісних співвідношень. Тому математичний аналіз став основою мови і математичних методів опису змінних величин та зв'язків між ними. В наші дні без математичного аналізу неможливо було б не тільки розрахувати космічні траєкторії, роботу ядерних реакторів, закономірності розвитку циклону, а й ефективно керувативиробництвом, розподілом ресурсів, організацією технологічних процесів, бо все це — динамічні процеси.

Елементарна математика була переважно математикою постійних величин, вона вивчала головним чином співвідношення між елементами геометричних фігур, арифметичні властивості чисел і алгебраїчні рівняння.

В кінці XVIIстоліття довколо Лейбніца виникає гурток, найвідомішими представниками якого були брати Бернуллі, іЛопіталь. В 1696, використовуючи лекції Й. Бернуллі, Лопіталь написав перший підручник, що викладав новий метод у використанні до теорії плоских кривих. Він назвав його Аналізом нескінченно малих, даючи тим самим і одну з назв новому розділу в математиці. В основу викладення покладений термін змінних величин, між якими існує певний зв'язок, через який зміна одної тягне за собою зміну іншої. У Лопіталя цей зв'язок дається за допомогою плоских кривих: якщо M - рухома точка плоскої кривої, то її декартові координати x та y, що мають назви діаметр та ордината кривої, змінні, при чому зміна x спричинює зміну y.